Probabilités : Loi binomiale - Spécialité

Révisions : Probabilité conditionnelle

Exercice 1 : Arbre de probabilités et interprétation d'énoncé (3 branches)

Un magasin de vêtements a constitué un stock d'un certain type de pantalons venant de trois fabricants \( f_1 \), \( f_2 \) et \( f_3 \).
Certains de ces pantalons présentent un défaut.
20% du stock provient du fabricant \( f_1 \), 25% du stock provient du fabricant \( f_2 \) et le reste du stock provient du fabricant \( f_3 \).
La qualité de la production n'est pas la même selon les fabricants.

Ainsi :
  • 9% des pantalons produits par le fabricant \( f_1 \) sont défectueux.
  • 5% des pantalons produits par le fabricant \( f_2 \) sont défectueux.
  • 6% des pantalons produits par le fabricant \( f_3 \) sont défectueux.
On prélève au hasard un pantalon dans le stock. On considère les événements suivants :
  • \( F_1 \) : « le pantalon a été fabriqué par \( f_1 \) » ;
  • \( F_2 \) : « le pantalon a été fabriqué par \( f_2 \) » ;
  • \( F_3 \) : « le pantalon a été fabriqué par \( f_3 \) » ;
  • \( D \) : « le pantalon est défectueux ».

Pour tout événement \( E \) , on note \( \overline{E} \) l’événement contraire de \( E \), \( p(E) \) la probabilité de \( E \) et, si \( F \) est un événement de probabilité non nulle, on note \( p_F(E) \) la probabilité conditionnelle de \( E \) sachant \( F \).

Donner \( p(F_3) \).
Calculer la probabilité, notée \( p(q2) \), que le pantalon choisi ne soit pas défectueux sachant qu'il a été fabriqué par \( f_2 \) ?
Compléter l’arbre de probabilités donné.
{"F_1": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}, "F_2": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}, "F_3": {"D": {"value": " "}, "\\overline{D}": {"value": " "}, "value": " "}}
Traduire mathématiquement l’événement « le pantalon choisi a été fabriqué par \( f_3 \) et n'est pas défectueux »
Calculer sa probabilité, notée \( p(événement) \).

Exercice 2 : Calculer des probabilités conditionnelles en situation concrète

Dans un club de vacances de \( 1\:000\) clients, on a constaté que \( 47 \) % des vacanciers pratiquent le golf et, parmi eux, \( 20 \) % pratiquent aussi le tennis. \( 47 \) % des vacanciers pratiquent le tennis.
On croise au hasard un vacancier du club.
On note \( G \) : l’événement « le vacancier pratique le golf » et \( T \) : l’événement « le vacancier pratique le tennis »

Compléter le tableau suivant :
{"header_left": ["Pratiquent le Tennis", "Ne pratiquent pas le Tennis", "Total"], "header_top": ["Pratiquent le Golf", "Ne pratiquent pas le Golf", "Total"], "data": [["?", "?", "?"], ["?", "?", "?"], ["?", "?", "1000"]]}
Déterminer \( p(G) \).
Déterminer \( p_{G}(T) \).
Déterminer \( p(G \cap T) \).
Déterminer \( p(G \cup T) \).
On rencontre un vacancier pratiquant le tennis, déterminer la probabilité qu'il pratique aussi le golf.
On donnera un résultat arrondi au millième.

Exercice 3 : Complétion d'arbre - remplir en totalité

Tous les résultats seront donnés sous forme décimale en arrondissant à \(10^{-4}\).
Un laboratoire de recherche met au point un test de dépistage d'une maladie chez une espèce animale et fournit les renseignements suivants : « la population testée comporte \(17\%\) d'animaux malades.
Si un animal est malade, le test est positif dans \(98\%\) des cas ; si un animal n'est pas malade, le test est négatif dans \(90\%\) des cas ».
On note \(M\) l'événement « l'animal est malade », et \(T\) l'événement « le test est positif ».
Remplissez l'arbre de probabilité ci-dessous.

Compléter l'arbre de probabilité correspondant à la situation.
{"M": {"T": {"intersection": " ", "value": " "}, "\\overline{T}": {"intersection": " ", "value": " "}, "value": " "}, "\\overline{M}": {"T": {"intersection": " ", "value": " "}, "\\overline{T}": {"intersection": " ", "value": " "}, "value": " "}}

Exercice 4 : Lecture d'énoncé - test médical

Un laboratoire de recherche met au point un test de dépistage d'une maladie chez une espèce animale et fournit les renseignements suivants : « la population testée comporte \(23\%\) d'animaux malades.
Si un animal est malade, le test est positif dans \(94\%\) des cas ; si un animal n'est pas malade, le test est négatif dans \(80\%\) des cas ».
On note \(M\) l'événement « l'animal est malade », et \(T\) l'événement « le test est positif ».
Déterminer \( P\left(M\right) \)
Déterminer \( P_M\left(T\right) \)
Déterminer \( P_\overline{M}\left(T\right) \)

Exercice 5 : Probabilité conditionnelle en situation concrète avec un tableau rempli, questions en langage mathématique

Dans un collège de 1000 élèves, on a constaté que :
  • - 39% font du tennis
  • - 51% font du football et, parmi eux, 20% font aussi du tennis
On note :
  • - S1 : l’événement « l'élève fait du football »
  • - S2 : l’événement « l'élève fait du tennis »
On donnera les informations sous forme d'un tableau :
Pratique le footballNe pratique pas le footballTotal
Pratique le tennis\(102\)\(288\)\(390\)
Ne pratique pas le tennis\(408\)\(202\)\(610\)
Total\(510\)\(490\)\(1000\)

 
Indiquer la probabilité \(P_{}(S1) \).
Indiquer la probabilité \( P_{S1}(S2) \).
Indiquer la probabilité \( P(S1 \cap S2) \).
Indiquer la probabilité \( P(S1 \cup S2) \).
Indiquer la probabilité \( P(\overline{S1}) \).
False